ON SEEKING BUCKLING MODES OF A CIRCULAR PLATE*

A.A. FONAREV

A construction of the buckling modes of a circular plate is examined by using the solutions of an infinite system of non-linear algebraic equations that appears on substituting their non-trivial solution representable, by assumption, in the form of series, into the non-linear Karman equations. It is shown that an approximation can be found to the solution of the system by using a projection method and a projection-iteration process in the Banach space of sequences whose series from the elements converge absolutely. Results of computations are presented.

1. The axisymmetric deformation of a thin circular elastic plate of constant thickness that is in equilibrium under a uniform compressive load applied along an edge is described by the non-linear Karman equations /1/ that reduce to the following system of equations

$$GQ(r) + \lambda^2 (1 - P(r)) Q(r) = 0, \ GP(r) = -\frac{1}{2}Q^2(r), \ 0 < r < 1$$
(1.1)

$$G = r^{-3}d (r^{-3}d/dr)/dr$$

where r is the dimensionless radius λ^2 is a dimensionless load parameter, Q is the dimensionless derivative of the transverse displacement with respect to the radius, and (P-1) is the dimensionless radial stress.

The assumption on symmetry and smoothness reduces to the conditions

$$Q'(0) = 0, P'(0) = 0$$
 (1.2)

If the edge r = 1 of the plate is rigidly clamped, then the additional boundary conditions

$$Q(1) = 0, P(1) = 0$$
 (1.3)

should be satisfied.

For any λ the boundary-value problem (1.1)-(1.3) has the trivial solution $Q(r) \equiv 0$, $P(r) \equiv 0$ (the non-buckling mode). Other (non-trivial) real solutions are called buckling modes.

As a result of linearization of problem (1.1)-(1.3) near the non-buckling mode, a linear second-order boundary-value problem is obtained

$$G\bar{Q} + \lambda^2 \bar{Q} = 0, \ 0 < r < 1; \ \bar{Q}'(0) = \bar{Q}(1) = 0, \ \bar{P} \equiv 0$$

which, for $\lambda = \lambda_n$ has the non-trivial solutions

$$\bar{Q}_n = r^{-1}J_1(\lambda_n r), \ J_1(\lambda_n) = 0 \ (n = 1, 2, \ldots)$$

utilized later to construct the plate buckling modes, where λ_n is the *n*-th zero of the Bessel function J_1 .

It is known that buckling modes exist for $\lambda > \lambda_1$ (see /2/ and the bibliography in /2/, say).

We assume that the non-trivial solution Q(r) and P(r) of problem (1.1)-(1.3) is represented by the series

$$Q(r) = e \Sigma_a, \quad P(r) = \dot{e}^2 \Sigma_b; \quad \Sigma_a = \sum_{n=1}^{\infty} a_n \overline{Q}_n, \quad a_1 = 1, \quad \Sigma_b = \sum_{n=1}^{\infty} b_n \overline{Q}_n$$
(1.4)

where ε belongs to the neighbourhood of the zero of the real line R, $\varepsilon \neq 0$. Then substitution of series (1.4) into the first equation in (1.1) yields

*Prikl.Matem.Mekhan., 54, 1, 75-79, 1990

$$\sum_{n=2}^{\infty} a_n \left(\lambda^2 - \lambda_n^2\right) \overline{Q}_n + \left(\lambda^2 - \lambda_1^2\right) \overline{Q}_1 - \lambda^2 \varepsilon^2 \Sigma_a \Sigma_b = 0$$

After multiplying this equality by $r^3 ar{Q}_m\left(r
ight)$ and integrating between 0 and 1 with respect to r, the following expressions are obtained because of the orthogonality of $\bar{Q}_1, \bar{Q}_2, \ldots$:

$$a_{n} = \frac{\lambda^{2} \varepsilon^{2} I_{n}}{(\lambda^{2} - \lambda_{n}^{2}) \| \bar{Q}_{n} \|^{2}} \quad (n = 2, 3, ...), \quad \lambda^{2} = \lambda_{1}^{2} \frac{\| \bar{Q}_{1} \|^{2}}{\| \bar{Q}_{1} \|^{2} - \varepsilon^{2} I_{1}}$$

$$I_{n} = \int_{0}^{1} r^{3} \Sigma_{a} \Sigma_{b} \bar{Q}_{n} dr, \quad \| \bar{Q}_{n} \|^{2} = \int_{0}^{1} r J_{1}^{2} (\lambda_{n} r) dr = \frac{1}{2} J_{0}^{2} (\lambda_{n}) \quad (n = 1, 2, ...)$$

$$(1.5)$$

Similarly, the expressions

$$b_n = \frac{1}{2\lambda_n^2 \|\bar{Q}_n\|^2} \int_0^1 r^3 \Sigma_a^2 \bar{Q}_n \, dr \quad (n = 1, 2, \ldots)$$
(1.6)

are obtained on substituting series (1.4) into the second equation of (1.1).

Expressions (1.5) and (1.6) yield an infinite system of non-linear algebraic equations in a_2, a_3, \ldots and b_1, b_2, \ldots which will be investigated later. It will be shown here that the system has a solution in a certain right semicircle of the point λ_1 .

If a_2, a_3, \ldots and b_1, b_2, \ldots in series (1.4) are solutions of system (1.5) and (1.6), then series (1.4) yield a non-trivial solution (or the buckling mode) of problem (1.1)-(1.3)with load parameter λ^2 obtained on substituting the solution of system (1.5) and (1.6) into the right-hand side of the second formula in (1.5). The solution of problem (1.1)-(1.3)being obtained here formally satisfies (1.1) because the convergence of series (1.4) being obtained, and the series for derivatives of terms of these series are not investigated.

If the boundary-value problem (1.1)-(1.3) is studied in the neighbourhood of the point $\lambda = \lambda_m \ (m \ge 2)$, and not $\lambda = \lambda_1$, then this case is considered analogously, and it is sufficient to take $a_m = 1$ instead of $a_1 = 1$ in (1.4).

2. Let us investigate the infinite system of non-linear algebraic Eqs.(1.5) and (1.6). Let l_1 be a Banach space of sequences $x=(x_1,\ x_2,\ldots)$ or real numbers for which the series $|x_1| + |x_2| + \ldots$ with the norm $||x_1| = |x_1| + |x_2| + \ldots$ converges, and let $D \equiv$ $\{x=(x_1,\,x_2,\,\ldots)\in l_1:\,x_1=1,\;\mid x_2\mid+\mid x_3\mid+\ldots\leqslant C\},$ where $\mathcal C$ is an arbitrary fixed positive number.

We consider the mapping B from D in the set of sequences that sets the sequence Bx = $((Bx)_1, (Bx)_2, \ldots)$ obtained on substituting elements of the sequence x into the right-hand side of (1.6) in place of a_1, a_2, \ldots for $n = 1, 2, \ldots$, into correspondence with the element $x=(x_1,\,x_2,\,\ldots) \in D.$ For each $n \geqslant 1$ we have

$$|(Bx)_n| \leqslant \left(\frac{1+C}{\lambda_n I_0(\lambda_n)}\right)^2 \int_0^1 |J_1(\lambda_n r)| dr \leqslant \frac{3^{3/4}(1+C)^2}{2\lambda_n^{-2} |J_0(\lambda_n)|^{3/2}}$$

because we have $|J_1(t)| \leq 1$ for all $t \ge 0$, which, when the Hölder inequality is utilized, yields

$$\int_{0}^{1} |J_{1}(\lambda_{n}r)| dr \leqslant \int_{0}^{1} r^{-i/4} (r^{i/4} |J_{1}(\lambda_{n}r)|^{i/2}) dr \leqslant$$

$$\left(\int_{0}^{1} r^{-i/4} dr\right)^{i/4} \left(\int_{0}^{1} r J_{1^{2}}(\lambda_{n}r) dr\right)^{i/4} = \frac{3^{i/4}}{2} |J_{0}(\lambda_{n})|^{i/2}, \quad \forall n$$

Therefore, by virtue of the convergence of the series

$$\sum_{n=1}^{\infty} \lambda_n^{-2} \left| J_0(\lambda_n) \right|^{-3/2}$$
(2.1)

(this series converges because $J_o(\lambda_n) = (2/(\pi\lambda_n))^{1/2} (\cos(\lambda_n - \pi/4) + O(\lambda_n^{-1}))$ and $\lambda_n = (n + 1/4) \pi + O(n^{-1})$ for large values of n, see /3/) $Bx \in l_1$ and a constant $C_1 > 0$, independent of $x \in D$ exists such that $||Bx|| \leq C_1$. D exists such that $||Bx|| \leqslant C_1$. Furthermore, for all $x, y \in D$ we have

$$|(Bx - By)_n| \leq 2 \frac{1+C}{\lambda_n^{3} J_0^{2}(\lambda_n)} \int_0^1 \left(\sum_{i=2}^{\infty} |(x_i - y_i) J_1(\lambda_i r)| \right) |J_1(\lambda_n r)| dr \leq 3^{3/4} \frac{1+C}{\lambda_n^{3} |J_0(\lambda_n)|^{3/2}} ||x - y||$$

for $n \ge 1$. This means that a constant $C_2 > 0$ exists such that $||Bx - By|| \le C_2 ||x - y||$, $\forall x$, $y \in D$.

Let $l_1 \times R$ be the Banach space of the pair $(x, t) \in l_1 \times R$, $x \in l_1$ and $t \in R$, with the norm ||(x, t)|| = ||x|| + |t|.

We define a real-valued function T that sets a number T(x, t) obtained on substituting elements of the sequences x and Bx in place of a_1, a_2, \ldots and b_1, b_2, \ldots , respectively, and t in place of ε on the right-hand side of the second formula of (1.5) in correspondence with the element $(x, t) \in D \times R$ $(x \in D)$ in $D \times R \subset l_1 \times R$. Positive numbers ε_1 , C_3 and C_4 exist such that $|T(x, \varepsilon)| \leq C_3$ and $|T(x, \varepsilon) - T(y, \varepsilon)| \leq C_4 \varepsilon^2 ||x - y||$ for all $\varepsilon \in [-\varepsilon_1, \varepsilon_1]$ and $x, y \in D$.

We also define the mapping A from $D \times R$ into the set of sequences that sets the sequence $A(x, t) = ((A(x, t))_1, (A(x, t))_2, \ldots)$ with $(A(x, t))_1 = 1$ and $(A(x, t))_n$ $(n \ge 2)$ obtained by substituting elements of the sequences x and Bx in place of a_1, a_2, \ldots and b_1, b_2, \ldots , respectively, and the numbers T(x, t) and t in place of λ^2 and ε , respectively, in the right-hand side of (1.5) for $n = 2, 3, \ldots$, in correspondence with the element $(x, t) \in D \times R$. Constants $\varepsilon_2 \in (0, \varepsilon_1], C_5 > 0, C_6 > 0$, exist such that $A(x, \varepsilon) \in l_1$, $||A(x, \varepsilon)|| \le 1 + C_5 \varepsilon^2$ and $||A(x, \varepsilon) - A(y, \varepsilon)|| \le C_6 \varepsilon^2 ||x - y||$ for all $\varepsilon \in [-\varepsilon_2, \varepsilon_2]$ and $x, y \in D$. Therefore, constants $\varepsilon_0 \in (0, \varepsilon_2]$ and $q \in (0, 1)$ exist such that $A(x, \varepsilon) \in D$ and $||A(x, \varepsilon) - A(y, \varepsilon)|| \le q ||x - y||$ for all $\varepsilon \in [-\varepsilon_0, \varepsilon_0]$ and $x, y \in D$. And the mapping $A(x, \varepsilon)$ is here constitutions in ε in $D \times [-\varepsilon_0, \varepsilon_0]$.

We note that explicit expressions can be obtained for the constants C_i (i = 1, ..., 6) in terms of C and the sum of the series (2.1).

Because of the fixed-point principle /4/ a mapping $x_0: [-\varepsilon_0, \varepsilon_0] \to D$ exists such that $A(x_0(\varepsilon), \varepsilon) = x_0(\varepsilon)$ for all $\varepsilon \in [-\varepsilon_0, \varepsilon_0]$, where such a mapping is unique and continuous. And for each fixed $\varepsilon \in [-\varepsilon_0, \varepsilon_0]$ the element $x_0(\varepsilon)$ is the limit of the sequence $v^{i+1} = A(v^i, \varepsilon)$ $(i = 0, 1, \ldots)$ with arbitrary $v^0 \in D$. Furthermore, if elements of the sequences $x_0(\varepsilon)$ and $Bx_0(\varepsilon)$ are taken as a_1, a_2, \ldots and b_1, b_2, \ldots in the series (1.4), then these series yield the solution of the boundary-value problem (1.1)-(1.3) with the load parameter $\lambda^2 = T(x_0(\varepsilon), \varepsilon)$ ($\varepsilon \in [-\varepsilon_0, \varepsilon_0]$).

System (1.5) and (1.6) cannot be successfully solved exactly; consequently, approximate methods for solving are considered later.

We fix any $i \ge 2$ and consider the subspace E_i of the space l_1 consisting of the sequences $x = (x_1, x_2, \ldots) \in l_1$ with $x_n = 0$ for all n > i. We define the linear projection operator $F_i: l_1 \to E_i$, that sets the element $F_i: x = y \equiv (y_1, y_2, \ldots)$ with $y_n = x_n$ for $n = 1, \ldots, i$ and $y_n = 0$ for n > i in correspondence with the element $x = (x_1, x_2, \ldots) \in l_1$. We have $||F_ix|| \le ||x||$, $\forall x \in l_1$. We introduce the set $D_i = D \cap E_i$ and the mapping $B_i: D \to E_i$, $B_ix = F_iB(F_ix)$ for $x \in D$.

We introduce the set $D_i = D \cap E_i$ and the mapping $B_i: D \to E_i$, $B_i x = F_i B(F_i x)$ for $x \in D$. We define the function $T_i: D \times [-\varepsilon_0, \varepsilon_0] \to R$, that sets the number $T_i(x, t)$ obtained on substituting the elements of the sequences $F_i x$ and $B_i x$ in place of a_1, a_2, \ldots and b_1, b_2, \ldots , respectively, and t in place of ε in the left-hand side of the second formula in (1.5) in correspondence with the element $(x, t) \in D \times [-\varepsilon_0, \varepsilon_0]$. We also define the mapping $A_i: D \times [-\varepsilon_0, \varepsilon_0] \to E_i$ that sets an element $A_i(x, t) = z \equiv (z_1, z_2, \ldots) \in E_i$ with $z_1 = 1$ and z_n $(n = 2, \ldots, i)$ obtained as a result of substituting elements of the sequences $F_i x$ and $B_i x$ in place of a_1, a_2, \ldots and b_1, b_2, \ldots , and the numbers $T_i(x, t)$ and t in place of λ^2 and ε , respectively, in the right-hand side of the first formula in (1.5) for $n = 2, \ldots, i$, in correspondence with the element $(x, t) \in D \times [-\varepsilon_0, \varepsilon_0]$. We have $A_i(x, \varepsilon) \in D_i$ and $||A_i(x, \varepsilon) - A_i(y, \varepsilon)|| \leqslant q ||x - y||$ for all $\varepsilon \in [-\varepsilon_0, \varepsilon_0]$ and $x, y \in D$, where the number q is the same as above. Therefore, from the theorem in /5/ we obtain the following theorem on the convergence of the sequences of the projection method (i.e., the convergence of $x^i(\varepsilon)$) and the projection-iteration process (i.e., the convergence of $y^i(\varepsilon)$) that combines the projection method and the iteration process in one, to the solution $x_0(\varepsilon)$ of the equation $A(x, \varepsilon) = x$ ($x \in D$).

Theorem. For each $i \ge 2$ a mapping $x^i: [-\varepsilon_0, \varepsilon_0] \to D_i$, exists such that $A_i(x^i(\varepsilon), \varepsilon) = x^i(\varepsilon)$ for all $\varepsilon \in [-\varepsilon_0, \varepsilon_0]$, where such a mapping is unique and continuous; the sequence of mappings $x^i(\varepsilon)$ $(i = 2, 3, \ldots)$ converges uniformly to $x_0(\varepsilon)$ in $[-\varepsilon_0, \varepsilon_0]$; for any mapping $y^i: [-\varepsilon_0, \varepsilon_0] \to D_2$ a sequence of mappings $y^{i+1}(\varepsilon) = A_{i+1}(y^i(\varepsilon), \varepsilon)$ $(i = 1, 2, \ldots)$ converges uniformly to $x_0(\varepsilon)$ in $[-\varepsilon_0, \varepsilon_0]$.

Remark. For fixed $i \ge 2$ the mapping $x^i(\varepsilon)$ from the theorem can be found by using the iteration process

$$z^{j+1}(\varepsilon) = A_i(z^j(\varepsilon), \varepsilon) \quad (j = 0, 1, \ldots)$$

with the arbitrary initial mapping $z^0: [-\varepsilon_0, \varepsilon_0] \to D_i$, where the following estimate of the rate of convergence holds:

$$|| z^{j}(\varepsilon) - x^{i}(\varepsilon) || \leq 2 (1 + C) q^{j} / (1 - q) \quad (j = 0, 1, ...)$$

for all $\varepsilon \in [-\varepsilon_0, \varepsilon_0]$.

The Theorem and the Remark enable us to seek an approximation to the solution of system (1.5) and (1.6) by which approximations to the buckling mode of problem (1.1)-(1.3) can be constructed.

In conformity with the above discussion, computations were performed using the projection method nad the projection-iteration process on ES-1033 and ES-1061 computers with double precision. The results showed that ε_0 is not a small number.

We will present some results obtained by the projection method. In this case the computations were performed for fixed ϵ in conformity with the Remark. The computation ceased for

$$\max_{n=2,\ldots,i} |(\boldsymbol{z}^{j+1}(\boldsymbol{e}) - \boldsymbol{z}^{j}(\boldsymbol{e}))_{n}| \leq \delta$$

where δ is a given accuracy (see $z^{j}(\varepsilon)$ in the Remark), here an element with $(z^{0}(\varepsilon))_{n} = 0$ for $n \ge 2$ was taken as $z^{0}(\varepsilon) = ((z^{0}(\varepsilon))_{1}, (z^{0}(\varepsilon))_{2}, \ldots) \in D_{i}$. If *m* iterations were performed as a result then $z^{m}(\varepsilon) = (a_{1}^{m}, a_{2}^{m}, \ldots)$ and $B_{i}z^{m-1}(\varepsilon) = (b_{1}^{m-1}, b_{2}^{m-1}, \ldots)$ were used to construct approximations to the buckling modes of problem (1.1)-(1.3): approximations to the buckling modes were examined in the form of the sums

$$Q_{i} = \varepsilon \sum_{n=1}^{i} a_{n} \overset{m}{=} \bar{Q}_{n}, \quad P_{i} = \varepsilon^{2} \sum_{n=1}^{i} b_{n}^{m-1} \bar{Q}_{n}$$
(2.2)

and the following quantities were calculated:

$$\begin{split} \gamma_{1} = \max_{\substack{k=1,...,49}} \| GQ_{i}(r) + \lambda^{2} \left(1 - P_{i}(r) \right) Q_{i}(r) \|_{r=r_{k}} \\ \gamma_{2} = \max_{\substack{k=1,...,49}} \| GP_{i}(r) + \frac{1}{2}Q_{i}^{2}(r) \|_{r=r_{k}} \\ (\lambda^{2} = T_{i} \left(z^{m-1} \left(\varepsilon \right), \ \varepsilon \right), \ r_{k} = k/50) \end{split}$$

which it is natural to designate as errors because they are obtained on substituting the approximations (2.2) to the buckling modes into (1.1).

Results of computations for $\delta = 10^{-15}$ are presented in the table.

е	i	Ŷı	Ý2	m	λ
0.5 0,5 1 2 2 2 2 2,3	55 60 60 5 20 30 60 60	$\begin{array}{c} 1.19\cdot 10^{-5}\\ 8.5\cdot 10^{-6}\\ 7.06\cdot 10^{-5}\\ 0.133\\ 1.73\cdot 10^{-2}\\ 7.1\cdot 10^{-3}\\ 6.53\cdot 10^{-4}\\ 1.06\cdot 10^{-3} \end{array}$	$\begin{array}{c} 2.33 \cdot 10^{-5} \\ 2.1 \cdot 10^{-5} \\ 8.55 \cdot 10^{-5} \\ 9.05 \cdot 10^{-2} \\ 1.04 \cdot 10^{-2} \\ 4.26 \cdot 10^{-3} \\ 3.71 \cdot 10^{-4} \\ 5.1 \cdot 10^{-4} \end{array}$	8 8 11 20 20 20 20 20 20 20 20 24	3.8493 3.8493 3.9029 4.1300 4.1301 4.1301 4.1301 4.2343

REFERENCES

- KARMAN T., Festigkeitsprobleme im Maschinenbau. Encyklopädie der Math. Wissenschaften.
 4, Leipzig, 1910.
- VOLKOVYSKY G.H., Proof of the existence of buckling modes of circular plates by using the Schauder fixed-point theorem, Bifurcation Theory and Non-linear Eigenvalue Problems, Mir, Moscow, 1974.
- 3. WATSON G.N., Theory of Bessel Functions, Pt. 1, Izd. Inostr. Lit., Moscow, 1949.
- 4. KANTOROVICH L.V. and AKILOV G.P., Functional Analysis. Nauka, Moscow, 1977.
- 5. FONAREV A.A., On the approximation scheme. Abstrs. of Papers Presented to the Amer. Math. Soc., 87th Annual Meeting, 2, 3, 1981.